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Compressible flows with r.m.8. velocities of the order of the speed of sound are studied 
with direct numerical simulations using a pseudospectral method. We concentrate 
on turbulent homogeneous flows in the two-dimensional case. The fluid obeys the 
Navier-Stokes equations for a perfect gas, and viscous terms are included explicitly. 
No modelling of small scales is used. We show that the behaviour of the flow differs 
sharply a t  low compared with high r.m.9. Mach number Ma, with a transition at 
Mu = 0.3. In the large scales, temporal exchanges between longitudinal and solen- 
oidal modes of energy retain an acoustical character; they lead to a slowing down 
of the decrease of the Mach number with time, which occurs with interspersed 
plateaux corresponding to quiescent periods. When the flow is initially supersonic, 
the small scales are dominated by shocks behind which vortices form. This vortex 
production is particularly prominent, when two strong shocks collide, with the onset 
of shear turbulence in the region downstream of the collision. However, at the 
resolutions reached by our code on a 256 x 256 uniform grid, this mechanism proves 
insufficient to bring vortices into equipartition with shocks in the small-scale tail of 
the energy spectrum. 

1. Introduction 
There are many examples of fluids around us that are compressible, at least enough 

to allow for sound propagation. On the other hand, flows in which the fluctuating 
Mach number is important are encountered in the fields of aerodynamics (for 
example, problems concerning the re-entry into the atmosphere of shuttle-like 
vehicles, or concerning the concept of the scramjet), as well as in astrophysics. Indeed, 
many celestial observations point to supersonic flows, in accretion disks, in galactic 
and extra-galactic jets and in molecular clouds. In  the latter case, recent data 
obtained in radio astronomy for CO lines and H,CO lines reveal an heterogeneous 
structure, consisting of bubbles with a turbulence among them having a velocity 
dispersion greater than the sound speed. Moreover, such a turbulence seems to follow 
a Kolmogorov law (Larson 1981), although somewhat steeper (M. Perault 1986, paper 
in preparation). The origin of such turbulence, in which self-gravitation plays a 
central role, is disputed and may be linked, for example, to stellar winds or to the 
presence of magnetic fields. In all instances, the flows may be considered homogeneous 
on average. 

Compressible flows have been studied extensively in the acoustic regime and many 
problems have been treated: how does noise affect the primary flow, and vice versa 
(Yates 1978) ‘1 What is the sound emitted in the far-field regime (Lighthill 1952,1954; 
Crighton 1975) ? How is the Kolmogorov law of spectral distribution of energy with 
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scale affected by a small density fluctuation? On the other hand, in the fully nonlinear 
regime, few analytical techniques are available. The approach of the renormalization 
group is rendered difficult by the high degree of nonlinearity of the equations (except 
in the acoustic case). Another possible technique is that of homogenization (Chacon 
& Pironneau 1986). For the one-dimensional problem, Tatsumi & Tokunaga (1974) 
showed that the long-time large-scale properties of a weakly compressible flow are 
described by the Burgers’ equation. 

In  the laboratory, the Lighthill formula for sound emission is verified up to Mach 
numbers well above the acoustic regime, the precise value depending upon the 
geometry of the flow. However, experiments in the regimes of interest to aerody- 
namicists and astrophysicists with a supersonic fluctuating Mach number are almost 
non-existent. In this context, numerical simulations are particularly useful. Many 
studies have been devoted to the inviscid problem, using a variety of artificial 
viscosities within the shocks (Roache 1972). Few codes, however, deal with the full 
Navier-Stokes equations which smooth the shocks naturally with no special 
restriction. Spectral methods have been widely used in the incompressible case and 
are now being extended to the compressible one (Streett, Zang & Hussaini 1983; 
LBorat & Pouquet 1986). Such methods, known for their accuracy for smooth flows 
(Gottlieb & Orszag 1977), are simple to implement in particular when the flow is 
assumed to be homogeneous. One-dimensional studies have shown that, even in the 
presence of shocks, spectral methods contain phase information that allows one to 
reconstruct the position of the shock (Arbarbanel, Gottlieb & Tadmor 1985). Studies 
of three-dimensional compressible viscous flows have been limited to a few cases 
(Feiereisen, Reynolds & Ferziger 1981) due to the limitation in resolution on 
present-day computers. 

In this paper, we present numerical results obtained for an homogeneous com- 
pressible fluid following the perfect-gas law and restricted to evolution in a plane. We 
choose to solve the NavierStokes equation, with dissipation terms treated explicitly 
and thus naturally smoothing shocks that will form. The main questions we address 
concerns the distribution of energy among the modes (compressible, solenoidal, 
internal) as a function of the scale, and the lifetime of a supersonic turbulence. We 
describe the numerical method in $2 and the results at low Mach number in $3 and 
at high Mach number in $4. Long-time properties of the flow are described in $5 and 
conclusions are presented in $6. 

2. The numerical method 
2.1. Introduction 

We shall describe the method we use in reasonable detail since our choice is not the 
usual one for compressible flows. 

In order to achieve good precision in the computation of the flow evolution, 
including the small scales, spectral methods are known to be both efficient and simple 
to implement. In  particular, they are well adapted to homogeneous flows for which 
one can use periodic boundary conditions with a Fourier representation. We thus 
develop in Fourier series each of the variable fields (see the equations below) in a 
square domain of N x N points uniformly distributed. Space differentiations are 
performed in spectral space, in which they reduce to simple multiplications, whereas 
the nonlinear terms are evaluated in configuration space. The method is efficient 
because there are now fast Fourier transform (FFT) algorithms written in machine 
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language; the one we use is due to C. Temperton, and allows the number of (linear) 
grid points N to be written as 

N - 2a3b5d. 

Our purpose is to reach the highest Reynolds number possible in order to let the 
flow develop turbulent structures. In order to do so, we have to adapt the code to 
the computer we use, the CRAY-1 of CCVR. It consists of one processor with 1 Mword 
of 64 bits (in fact, slightly more) in the central memory and a cycle time of 12.5 ns. 
On such a machine, which is fast but with (relatively speaking) little memory, we 
choose to minimize the number of N x N arrays used, at the cost of extra FFTs to 
compute the various terms of the equations. We thus use 14 N x N arrays altogether 
and 19 FFTs are computed per time-step. It should be noted that in the barotropic 
case, where the pressure is a function of density, the number of FFTs can be as low 
as 8. The equations are written in conservation form (see below) which makes the 
temporal conservation of mass, momentum and total energy particularly simple to 
implement with a spectral method. We stress that the dissipative terms are treated 
in an exact way, with no approximation, which accounts for the fact that the 
computation of the energy equation is costly. No filtering in the smallest scales of 
the flow is used either, which will show up in the contour of the derivative fields such 
as the vorticity. It is known that, in the presence of a sharp discontinuity, the Gibbs 
phenomenon occurs, with oscillations at the edge of the jump that do not disappear 
as the number of modes is increased in the computation. It has been shown 
(Abarbanel et al. 1985) on one-dimensional computations that such oscillations should 
not in fact be filtered out, since they contain phase information essential in localizing 
the shock position. However, we choose to simulate not the Euler equations but the 
Navier-Stokes equations, in which case we have to adapt the viscosity in order that 
the quasi-discontinuity in velocity (for example) is spread out over several grid 
points. Here we have some latitude, depending on what the computation is aimed 
at. When we wish to stress the large-scale phenomena, three grid points per jump 
appears to be the limit before instabilities develop, but displays of vorticity or similar 
fields will show strong oscillations of the Gibbs type. On the other hand, to perform 
predictions on the behaviour of the flow in the small scales, as many as eight grid 
points through the pseudoshock may be necessary. 

With nonlinear dissipative terms, we make use of an entirely explicit temporal 
scheme, namely the Adams-Bashforth one which is second-order accurate in time. 
Two stability conditions arise, which we recall here. The first one is that of 
Courant-Friedrichs-Levy (CFL) : 

where At is the time-step, k,,, the high-cutoff wavenumber of the computation, and 
Urnax and CmaX are the maxima of the velocity and of the speed of sound respectively. 
The other stability criterion is related to the viscous terms, and reads 

where p is the dynamic viscosity and pmin the density minimum (taken over the 
computation box). It is the latter condition that imposes the most severe constraint 
on the possible time-step we use at  high Mach number, because of cavitation effects 
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with the occurrence of regions of very low density; it is the former constraint that 
matters at low Mach number since the sound speed is high (or conversely the typical 
velocities are low). 

The code has been run on the CRAY 1 of the CCVR with a resolution of up to 
256 x 256 grid points. One time-step is performed in 0.6 s of CPU time, and the 
memory necessary for the code is 1.2 Mwords. We were led to make use of peripheral 
memory to achieve such a resolution, with an additional cost because of the slow 
transfer time with central core. 

A typical run lasts three hours of CPU at that resolution. This shows the limitations 
of machines such as the CRAY 1 and it is the main reason for our using the 
two-dimensional approximation. The three-dimensional case awaits the arrival of 
more powerful computers which will probably be multi-processors. 

2.2. The equations in nondimensionalized form 
We consider a medium of characteristic length L,  of mean density po and mean 
velocity U,. The density p and the velocity u are normalized to unity through the 
introduction of these mean values, and the spatial scale (size of the computation box) 
is 2 x ,  with wavenumbers varying from kmin = 1 to k,,, = i N  with N the number of 
grid points used in each direction (we choose square boxes). We still have to 
determine, in the framework of classical mechanics, a temperature scale. In the 
definition of the Mach number M =  U,/Co, the sound velocity is based on the 
normalization temperature T, : indeed Ci = yRT,, where y is the adiabatic index and 
R the perfect-gas constant. T, is chosen to ensure that the temperature variable T 
also be of order unity. Taking, furthermore, as dependent units L/Uo  for time and 

for internal energy, the Navier-Stokes equations, with a perfect-gas law, take the 
form 

a,p+vqpu) = 0, (2.3) . 

V2T, (2.5) 
1 1 a, E + V * (Eu + (y  - 1) peu) = - V (z'u) + 

Re (7-1) P r R e W  

where three dimensionless parameters appear: the Mach number M = Uo/Co, the 
Reynolds number Re = po Uo L/,u and the Prandtl number Pr = yC,/K where C, is the 
constant-pressure specific heat and K is the coefficient of thermal conductivity. In the 
above equations, e = CUT is the internal energy where C, is the constant-volume 
specific heat, and E = pe+$pu2 is the total energy. Finally T ~ ,  is the viscous stress 
tensor, defined as 

725 = yv.ust5+,u(a,u,+a2u,), (2.6) 

where S,, is the Kronecker symbol and where 7 = -$, with the choice of a zero 
volumetric viscosity coefficient. These equations conserve mass, momentum and total 
energy. In the barotropic case (p = p"), the potential vorticity w / p  (where o = curl u )  
is a Lagrangian invariant. In the thermodynamic case, only a weaker conservation, 
namely that of total vorticity obtains (Gaffet 1985), and thus potential-enstrophy 
conservation is lost. Note that in geostrophic turbulence, for small perturbations, one 
can make use of quasi-conservation of enstrophy (Farge & Sadourny 1987). In  our 
case, fluctuations in the density field are strong enough to prevent any analysis in 
such terms. 
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2.3. Initial conditions 
In the computations described in this paper, we systematically use random initial 
conditions in order not to introduce an experimental bias. This is done by computing 
with a random-number generator the Fourier components of the four scalar fields. 
In each field, we then multiply the components enclosed in a cylindrical layer of width 
unity and of wavenumber labelled by a given k,, by a constant c(k,)  to obtain a field, 
the correlation spectrum of which we can prescribe a t  will. We take 

where k, is the wavenumber corresponding to the integral scale of the flow I ,  - k i l .  
The above choice is customary in turbulence simulations, and corresponds to initial 
conditions mimicking a noisy large-scale instability with exponential fall-off. For the 
density and the temperature fields, we need to deal with configuration-space data to 
impose positivity everywhere, as well as unit mean value and the given correlation. 
For the velocity, we decompose the randomly produced field into its zero divergence 
part us, and zero-curl part u, by simply making a projection of its Fourier components 
respectively parallel and perpendicular to the wavevector. This decomposition is 
particularly well-suited to the spectral method used here and is furthermore 
convenient for stressing the new features that develop in the flow, when compared 
to the incompressible case. 

The degrees of freedom of given initial conditions are thus taken to be the integral 
scale k i l ,  the energy ratio between the two velocity modes (compressible and 
solenoidal), the intensity of density and temperature fluctuations, the fluctuating 
Mach number of the flow, the Reynolds number, chosen so as to ensure proper 
dissipation in the small scales (the values given in this paper are based on the Taylor 
microscale), the Prandtl number, which we keep constant and equal to unity 
throughout the paper, and finally, the adiabatic index y which we also fix here to 
be 1.4. With a 256 x 256 code, a Reynolds number of 500 or Mach numbers (based 
on the fluctuating velocity field) of up to 2, on average, are reached. 

2.4. Tests of the code 
Apart from trivial tests, such as computing the first time-step by hand with simple 
initial conditions and comparing it to the numerical output, we have performed 
one-dimensional shock-tube calculations to verify the accuracy of the code. These 
tests are reported elsewhere (Gorat,  Pouquet & Poyet 1984) for the barotropic case, 
with polytropic indices of 1.4 and 1, and an initial density jump of 8. We show in 
figure 1 the results of a calculation of a shock tube in the thermodynamic case. The 
gas is initially at rest with constant temperature TI = 1 ; the density presents two 
jumps separating three constant states, the middle one (p4 = 3) being ten times 
denser than the other two. We in fact simulate two shock tubes in order to satisfy 
the periodic boundary conditions. The initial discontinuity degenerates into a shock 
wave (with height p,, U, and T,) propagating with velocity 8 ,  and a rarefaction wave. 
The two opposite-travelling waves are separated by a contact discontinuity with 
height p3 and !& The computation is done on a grid with 256 points; the dynamical 
viscosity is 5 x and the Prandtl number here is taken infinite. 

In  table 1,  we compare the values of the jumps given analytically to those found 
in the numerical simulation. The agreement is better than 0.5 %. We note that the 
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P2 P3 T2 T, u2 S 

Predicted 0.613 1.223 1.393 0.698 0.821 1.608 

Observed 0.616 1.218 1.395 0.70 0.821 1.595 

TABLE 1. Comparison between predicted and observed values for the parameters of the shock 
tube ; s is the velocity of the shock. Both agree to within less than 0.5 yo. 

Re Ma X Re Ma X 
Run N t = O  t = O  t = O  t = 2  t = 2  t = 2  k0 

A 128 50 0.028 0.07 56 0.037 0.65 3.7 
B 256 115 1.65 0.12 76 1.10 0.20 1.8 
C 256 300 1.10 0.58 215 0.81 0.50 1.2 

TABLE 2. Characteristics of runs described in this paper. N is the linear resolution, Re the Reynolds 
number based on the Taylor microscale, Ma the r.m.5. Mach number, x = ZP/P the ratio of the 
compressible to the kinetic energy, and k, the wavenumber corresponding to the integral scale. For 
all two-dimensional runs, the Prandtl number is unity, y = 1.4 and the mean density and 
temperature are equal to one. Initial conditions are random with the given spectrum peaking at 
ko with an exponential fall-off at small scales. 

contact discontinuity extends over more points than the shock wave (9 versus 4), this 
effect being amplified when the Prandtl number is not infinite. 

Finally, the labels of the various runs described in this paper are given in table 2 
with some of their characteristics. 

3. The weak Mach-number regime 
Although the code is set-up to study the case where the Mach number is close to 

unity, we start the description of our results by stating how the flow is modified when 
compressibility effects are taken into account, first at a low level. We thus take initial 
conditions that are close to the incompressible case. Two regimes appear, according 
to whether the density fluctuations Sp/p at t = 0 are larger or smaller than Ma2. 

When, initially, Sp/p < Ma2 the regime remains quasi-incompressible for all times. 
Most of the energy is in the solenoidal part at all scales, with the ratio between the 
divergence-free and the curl-free energy spectrum increasing with wavenumber. We 
make no attempt to perform a detailed study of inertial indices m of the spectra, 
defined via 

E(k)  - k-m, (3.1) 

but rather evaluate them in a simple way. The reason is that, even in a 256 x 256 
computation, the inertial range is limited to at best a decade of wavenumbers. This 
proves insufficient to distinguish between the various possible inertial ranges to be 
mentioned below. In the two-dimensional incompressible case, the inertial spectrum 
index has been determined at high-resolution with up to 2048 x 2048 grid points in 
a code using internal symmetries of the initial conditions (Brachet, Meneguzzi & 
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FIGURE 2. Energy spectrum decomposed into its solenoidal part (9) and compressible part (c) 
for the acoustic regime (run A). 

Sulem 1985). It agrees with the m = -3 law proposed by Kraichnan (1967) on the. 
basis of a statistical theory. 

When, initially, the density fluctuations are stronger than Ma2, even by a slight 
amount, the flow bifurcates towards a totally different regime. It rapidly transforms 
itself, with initial conditions mostly solenoidal, into the opposite quasi-potential flow 
in which the compressible modes represent more than 70 % of the kinetic energy and 
in which the density fluctuations become of the order of Ma. We show in figure 2 the 
energy spectrum decomposed into its solenoidal (8) and compressible (c) parts in this 
acoustic regime. The initial conditions are random with Ma = 0.03, and Re = 50. 
Furthermore, we define 

EC 
X'@ 

as the ratio of the compressible energy Ec to the kinetic energy Ev = Ec + @, where 
@ is the solenoidal energy and where energies are integrated over the computational 
box. Here, we have initially x = 0.07 ; at time t = 1 .75 a t  which the spectra are shown 
x = 0.71. Note that it takes a time t = 0.6 for a sound wave to travel across a distance 
L. The compressible modes are dominant a t  all scales, with an inertial exponent of 
the compressible spectrum close to 3.5. Such a spectrum has been proposed by L'vov 
& Mikhailov (1978a,b) on the basis of an equilibrium between the emission and 
absorption processes of sound, but for a slightly different context from the one 
modelled here. 

Another model for compressible flows in the acoustic regime has been proposed by 
Zakharov & Sagdeev (1970); the argument is essentially that of dimensional analysis 
and leads in the two-dimensional case to a k-ll/' inertial range, which we do not 
observe. 

Two other possibilities should be mentioned. One concerns a phenomenological 
analysis, stating that shocks that lead individually to a k-2 spectrum do not have 
time to form (Moiseev et al. 1977), because of the effect of turbulent viscosity which 
dampens and considerably widens the shocks. Instead, a k f  spectrum should form, 
the argument being similar to that given by Kraichnan (1965) in the case of MHD 
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turbulence. The main point is that in the presence of waves (acoustic, or Alfvenic 
in the MHD case), energy transfer is considerably hampered and the efficiency of the 
cascade is diminished. Such a spectrum for two-dimensional MHD turbulence is in 
the simpler cases compatible with recent numerical simulations (Pouquet, Sulem & 
Meneguzzi 1986). But it should be noted that, in the MHD case, a supplementary 
geometrical effect comes into play. Indeed, the wave propagation is well ordered, 
taking place along the magnetic field lines of the large-scale (or uniform) field. 
However, in the acoustic case, we are not aware of such a geometrical effect. This 
may explain the different behaviour we find in the numerical simulations of the two 
cases, acoustic and Alfvenic. 

Finally, we should mention a theoretical determination (Moiseev et al. 1981) of the 
correction to a Kolmogorov spectrum due to weak compressibility. The analysis, 
using diagrammatic techniques and also self-similarity arguments is done in the 
three-dimensional case; the authors find a correction of order Mz to the celebrated 
-5 law. As mentioned before, the two-dimensional inertial-range index is more likely 
to be equal to -3 in the incompressible regime, unless coherent structures play a 
dominant role. One may thus expect a -3+O(Mz) for the acoustic regime in two 
dimensions, which would be consistent with our results. Such an analysis requires that 
the sink of energy in the inertial range due to weak compressibility induces as well 
an enstrophy dissipation. However, note that in the two-dimensional incompressible 
case, it is known that enstrophy transfer is markedly nonlocal (i.e. involves widely 
separated scales) in contrast to the three-dimensional case, and thus the sink of 
enstrophy may appear at a higher order in Mach number. 

Such weak acoustic turbulence is characterized by flow structures that are 
displayed in figure 3. The thin layers correspond to weak shocks, with negligible 
entropy jumps, and this kind of flow does not actually require a treatment of the 
energy equation. The density contours of figure 3 are shown at t = 1.75. A typical 
jump in the density is 0.1 (normalized value). These weak shocks will be as thin as 
the resolution permits, i.e. a few grid points across. This condition is fulfilled, as stated 
before, by a proper choice of the Reynolds number; in particular, we verify that there 
is little or no rise in the spectra in the vicinity of the maximum wavenumber of the 
computation. 

We are not able to say what determines the longitudinal extent of these shocks. 
Do initial conditions prevail, with the average length of the density structures that 
at the initial time ? There is some evidence for this, but we also observe merging of 
these shocks with time, with the formation of slightly curved density filaments, like 
the one visible in the centre of figure 3. A study of long-time behaviour of this and 
other flows may be undertaken, making use of various techniques ranging from a 
modified viscosity to a more sophisticated parametrization of the small scales. This 
point will be discussed further in $6. 

Finally, we wish to stress that in all the calculations we have performed at low 
Mach number, the inertial spectra are clearly steeper than k-a. This latter value has 
been predicted by several authors (Kadomtsev & Petviashvili 1973; Elsasser & 
Schamel 1976) in the case of weak shocks for either one-dimensional or two- 
dimensional turbulence. This is also the spectrum for the turbulence described by the 
Burgers’ equation, and corresponds to the formation of quasi-discontinuities. In fact, 
Tatsumi & Tokunaga (1974) showed using multiple-scale analysis that in the 
one-dimensional case for low-amplitude fields, large scales and long times, the flow 
evolves towards that described by Burgers’ equation. The extension of their analysis 
to the stationary two-dimensional case can be done (Tokunaga & Tatsumi 1975), 
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FIGURE 3. Density field for the acoustic regime (run A) at t = 1.75. 

arguing that elongated structures necessarily form (since a shock is likely to be of 
finite extent and small width) and that they are quasi one-dimensional and isolated 
in space. Thus, this will again eventually lead to a k-2 Burgers-like spectrum. 

The reasons why we do not find such shallow spectra may be twofold. On the one 
hand, our codes still lack sufficient resolution to be in the conditions described in the 
theoretical works. In  particular, the inertial range and the dissipative range are not 
markedly separated. Moreover, the inertial range may be contaminated by power-law 
prefactors preceding the viscous range which arise when the structure of the 
complex-plane singularities of the flow may not be simple poles any more. Indeed, 
it is found both analytically (using a dominant balance analysis) and numerically that 
the leading singularities arising in a one-dimensional model of the compressible case 
are more complicated, and lead to crest-like irregularities in the energy spectra 
(T. Passot 1986, paper in preparation). On the other hand, the aforementioned 
theoretical approaches do not take into account the statistical interaction of the 
numerous weak shocks present in our simulations, as can be seen in figure 3. As in 
the two-dimensional incompressible case, such interactions may lead to a different 
spectrum from that constructed from simple analytical solutions; in that case 
vorticity jumps leading to a k-4 spectrum (Saffman 1971). Finally, we note that a 
Burgers’-like turbulence may arise only for long times, as predicted and observed 
numerically from Lighthill’s (1956) equations by Tokunaga (1976). 

In order to check this point we have performed a one-dimensional numerical 
simulation of a compressible gas using the complete equations of a perfect gas. 
Starting with a Mach number of 0.5, we observe two distinct phases in the evolution 
of the flow. A t  first, shocks form that are separated by rarefaction waves, i.e. by 
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regions in which the density varies substantially. Corresponding velocity spectra are 
rather steep, with a slope of the order of -3. For late times when a substantial 
amount of the kinetic energy has disappeared into heat, the flow is indeed made up 
of triangular N waves (Lighthill 1956) and density structures are simpre plateaux of 
various heights. The velocity spectrum has now become shallower, and its slope is 
close to -2, as expected for a flow only made up of jumps. In the former case (early 
time), however, the rarefaction waves provide a smoothing effect, since the density 
gradients in them are less sharp than in shocks; hence a steeper spectrum. To observe 
a similar effect in the two-dimensional case seems unnecessarily costly. One 
possibility, which will be further discussed in $6, is to artificially enhance the 
Reynolds number by using dissipation functional forms different from those of the 
original equations. This work is now in progress and will be reported elsewhere (Passot 
& Pouquet 1987). 

4. The strong Mach-number regime 
We now examine the case of an initially strongly compressible flow, with a r.m.s. 

value of Mach number ranging from 0.3 to 2. The various theoretical and 
phenomenological analyses quoted in $3 do not apply to this regime, where density 
fluctuations are of order one and compressible effects can no longer be considered a 
perturbation on a vortical flow. However, as we shall see in $5, the acoustical 
character of the flow is still felt in the large scales. 

In  all the cases we ran, with random initial conditions in which the ratio of the 
compressible to  the kinetic energy x varies between 0 and 0.6, we systematically 
observe that small scales are dominated by shocks and large scales by vortices. We 
display in figure 4 the contours of (a) the divergence of the velocity field and (b)  the 
vorticity at time t = 1.375. For this run a t  Ma = 1.65, it  takes a sound wave a time 
t = 10 to cross the box of size L = 2 x ;  the initial Reynolds number is Re = 115 and 
x = F/Ev = 0.12 (resolution of 256 x 256). Several shocks are seen in the divergence 
plot, with maxima of the divergence around - 5. Their width is due to viscous effects, 
and these widths are in a sense the smallest dynamical scales actually resolved by 
the computation. On the vorticity plot, we see that vortices are most intense in the 
vicinity of such shocks, with the same longitudinal extent but with a greater width. 
In that run, shocks form in pairs because of their strength. Indeed, with an r.m.s. 
Mach number of 2, local Mach numbers up to 3.6 can be observed in individual shocks 
in which the density jump approaches its limit value of 6 (for y = 1.4). In figure 5, 
we display an oblique profile across a double shock at  a later time than figure 4, for 
the same run. The density jump here is close to 5 and the temperature jump close 
to 2. In such shocks, entropy is produced, along with a strong local heating. This 
computation is particularly well resolved, as can be seen from the profiles in figure 
5, where all the computational points are displayed. The strong density gradients of 
both shocks occur on 8-10 grid points. This run could be performed at  a higher 
Reynolds number, reducing this shock width to half its present value, but oscillations 
will then appear and be particularly visible in the divergence and vorticity contours 
that enhance small-scale behaviour. 

The time sequence of the evolution of the flow may be as follows. Starting with 
a quasi-incompressible distribution of eddies concentrated in the large scales (k, - 2), 
shocks appear in a time of order unity in pairs whose elements then move farther 
apart as time proceeds. This phase is followed by interactions between the various 
shocks that are of two different types. In  a collision, the shocks may either ignore 
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FIQURE 4. Divergence (a) and curl ( b )  of the velocity field for a flow with initial Reynolds 
number of 115 and r.m.8. Mach number of 1.65 (run B) at t = 1.375. 

each other and continue their path with a slightly different velocity, or they can 
coalesce. What distinguishes the two behaviours is a combination of kinetics and 
geometry. The preceding process can repeat itself, with successive shock formation, 
collision and possible coalescence. We observe in general that the number of shocks 
in the box tends to diminish with time, with the formation of structures that are 
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FIQURE 5. Oblique profile of the density (solid line) and temperature (dotted line) in a double 
shock for run B. 

X 

FIGURE 6. Density contours at a later time (t = 3.25) for run B. 

quasi-one-dimensional and somewhat elongated, as displayed in figure 6, which gives 
the density contours at t = 3.25 for the same run as in figures 4 and 5. 

Let us finally note that the interaction between a shock and a vortex can be of 
several types. On the one hand, vortices are flattened by shocks, with the formation 
of shear layers; this is particularly visible in the lower-Reynolds-number runs. On 
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FIGURE 7. Energy spectrum, with solenoidal (solid line) and compressible (dotted line) 
components, the latter being dominant in the small scales (run B). 

the other hand, vortices are formed behind a shock, with a scale larger than that of 
the width of the shocks. A third possibility, which may be the dominant effect in 
highly turbulent flows, will be suggested below. 

The domination by shocks in the small scales of the flow is particularly evident 
on the energy spectra shown in figure 7 for the same run as in the preceding figures. 
The longitudinal modes are overwhelming in the small scales, by three orders of 
magnitude. Similar results hold for other runs in the strong-Mach-number regime, 
and this is also the case for the barotropic case (L6orat et al. 1983). In the large scales, 
vortices can prevail over compressive modes, roughly by a factor five at k = 3 in run 
B (see table 2). 

The spectra of the velocity components u, and uy in the x- and y-directions are 
indistinguishable st all scales (not shown). This is because, although individual shocks 
are highly anisotropic with a width negligible compared to their length, the number 
of shocks in the box is sufficient to ensure isotropy. On the other hand, a t  later times 
when most shocks have disappeared, x- and y-velocity spectra begin to show some 
discrepancy, up to a factor three. A remarkable feature is that the temperature 
spectrum, for large enough Reynolds numbers, is in almost exact equipartition with 
the velocity (u, and uy)  spectra. 

Concerning the small scales, the result presented here is in contradiction with a 
prediction of Kraichnan (1953) based on general arguments of statistical equilibrium. 
In the small scales, the typical interaction time between shocks and vortices is small 
enough that equipartition between the various modes should be reached. We find no 
clear variation of the ratio xss = E&/E& (ss referring to small-scale quantities) with 
either Reynolds number or Mach number. The transition between the weakly 
compressible case, in which the opposite situation occurs with predominance of the 
vortices at all scales, is sharp, and occurs at a Mach number of 0.3. The lack of 
equipartition at high Mach number could be a dimensional effect: the conservation 
of enstrophy in the incompressible case may play a role. We are presently writing 
a code for the three-dimensional case which will run on a more powerful machine to 
check this point. Preliminary results (Passot 1987) at a Reynolds number of 230 and 
a Mach number of 2.2 on a 128 x 128 x 128 grid indicate that equipartition may not 
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be reached in three dimensions either. Such results may be because the Reynolds 
numbers achieved in our computations are not sufficient to let efficient interaction 
between shocks and vortices take place. We must stress the fact that the compressible 
problem has proven to be harder to properly resolve than previous studies we 
performed in the incompressible NavierStokes or MHD case in the sense that, for 
a given grid, the reasonably attainable Reynolds numbers are somewhat lower here. 
This may be linked to the fact that two-dimensional hydrodynamic flows are known 
to be smooth for all times (Wolibner 1933) and two-dimensional MHD flows are also 
thought to be smooth for long times (Frisch et al. 1983), the flattening of current sheets 
at  neutral X-points presumably occurring only exponentially with time (Sulem et al. 
1985). On the other hand, in the compressible case, shocks form in a finite time. The 
investigation of the small-scale structure of the flow requires careful numerical 
integration. One way to enhance the Reynolds number is to modify the small scales, 
and several possibilities have been tried in different contexts. This point is discussed 
more at  length in $6. 

But clearly this will not help to resolve the problem at hand. However, the brief 
description of another case we ran may shed some light on the evolution of 
high-Reynolds-number compressible flows. We have performed a run, with the 
256 x 256 grid, in which initially Re = 300, Ma = 1.1 and x = 0.58 (run C). The 
overall temporal evolution of the flow is similar to what has been described before. 
The higher Reynolds number simulated here is rendered possible by the fact that the 
Mach number is smaller than for run B:  shock formation is less efficient and less 
viscosity is needed to smooth out the flow. The novel feature of this run appears in 
the display of the production term of vorticity w. We write omitting dissipation 
terms : 

(4.1) 

where D is the Lagrangian derivative and the production term of vorticity P, is 
given by 

(4.2) 

with p the pressure, T the temperature and S the entropy. Note that this term is zero 
in the barotropic case (p = pa). This increase in the vorticity happens at the expense 
of the internal energy, as (4.2) shows; we checked that on the energy spectra, when 
such vortices appear, the solenoidal spectrum gains in power whereas the compressible 
spectrum remains the same. 

We show in figure 8 the contour lines of P, for run C at t = 3.6. A t  later times, the 
overall vorticity production will be of the same nature but less intense, because of 
the decrease over time of the Reynolds number, and the P-spots will be situated 
elsewhere. The striking feature of figure 8 is the spatial intermittency of P,, with 
well-defined finite-extent eddies of a size intermediate between the length and the 
width of the shock. The intensity of P, at the time shown in figure 8 goes up to 100, 
whereas typical numbers for either V p  or Vp are of the order of 10. Since no cavitation 
is observed at  such locations, the effect is mostly geometrical in nature, namely with 
the gradients of pressure and density (or temperature and entropy) almost 
orthogonal. 

These P-eddies are localized in zones where two strong shocks interact. Figure 9 
shows the full flow for run C at the same time, and a blow-up of the upper-left collision 
is given in figure 10 a t  t = 4.0. In  the matching region of the two quasi-linear shocks, 

Dw 
Dt 
-- - P,-w(div u )  

1 
P, = --Vp x Vp = (VT x VS)p, 

P2 
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FIGURE 8. Contour lines of vorticity production term defined in (4.2) for run C at t = 3.6. Note 
its strong spatial intermittency. 

FIGURE 9. Density contours for run C at t = 3.6. 

the size of which is determined mostly by viscosity, two vortices of opposite polarity 
form. As time proceeds, their widths remain approximately the same, and their 
lengths augment along the two initial shocks through line stretching. Because of their 
rather small size, dissipative effects take place in a time less than one and these 
structures finally disappear, being replaced by similar pairs of vortices where other 
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shocks collide. The intensity of these vortices dominates the surrounding background 
flow and is evident in the spectra. Figure 1 1  shows the energy spectra, decomposed 
as usual into solenoidal and compressible parts, for run C at  time t = 4. One can no 
longer speak, in such a case, of an inertial range with a power law. The visible crests 
on the solenoidal spectrum are at a scale that corresponds to the observed vorticity 
pairs, and form at larger wavenumbers at later times. In  time, such pairs are created 
and destroyed, with sizes that decrease since shocks become weaker. The spectra have 
thus a complex temporal evolution. However, on average, the solenoidal spectrum 
may be brought close to its equipartition value with the compressible one. 

There is a simple physical reason for the production of vorticity in the narrow zone 
delineated by the shock collision. We shall first recall the analysis of shock collisions, 
following Landau t Lifshitz (1959). In  figure 12(a), we sketch the well-known 
geometry of an oblique shock. The velocity component V, orthogonal to the shock 
is shown with a dotted line, and the tangential component q, with a wavy line. Shock 
conditions are such that V, is supersonic behind the shock and subsonic in front of 
it. On the other hand V),-which does not undergo a jump- can be supersonic, in which 
case the shock may be oriented as indicated by the double arrow in the sketch. This 
representation of a shock specifies in fact the direction of propagation of a sonic 
disturbance, in the same direction as the tangential post-shock velocity. This type 
of diagram is useful in classifying possible configurations in multiple shock collisions. 
When two strong shocks meet, a likely configuration is that shown in figure 12(b )  
in which, in region IV, there must exist in general a tangential discontinuity in the 
velocity, indicated by the broken line; note that conditions for a ternary collision 
are more stringent and thus it is easier to observe the 4-collision shown in figure 12 ( b ) .  
It is this shear that is very likely at the source of the vorticity in our numerical 
simulation; the observed configuration of shock collisions is indeed that of figure 
12(b) ,  with vortices of the width of the shear layer, governed as already noted by 
viscosity. The reason for the opposite polarities of the vortices across the contact 
discontinuity is clear when one considers the geometry of the flow in the cone of shear 
turbulence occurring at  the shock collision. In  that region, as shown on figure 12 ( c ) ,  
the entropy gradient VS and the temperature gradient VT across the two shocks are 
such that their vector product changes sign at the contact discontinuity (see (4.2)). 
In that light, a high-resolution study of Kelvin-Helmholtz instability is useful. A 
careful analysis of the data using an image processor with raster technique shows 
clearly, on the density field, the existence of turbulence in this region, whereas in the 
three other domains in the vicinity of the collision, the density varies more smoothly. 
We should, however, note at this point that textbook shocks with constant density 
on each side of the jump are not likely to be found in our computation. Indeed, shocks 
are not isolated, but interact with a multiplicity of structures, rendering the matching 
of density zones complex enough that rarefaction waves are found everywhere. As 
already noted, this is probably at the source of the steep energy spectra that we 
observe. Furthermore, the data displayed and analysed here are for times of the order 
of a few eddy turnover times. For larger times, we expect that these rarefaction waves 
will disappear, leading to a simpler aspect of the flow, with a few elongated shocks 
with zones of quasi-constant density between them. The effective Reynolds number 
of this shear turbulence, which must be computed on the limited size of the region 
where the discontinuity prevails, is substantially lower than the Reynolds number 
based on the large scale of the flow. This may be the reason why the solenoidal part 
of the energy spectrum is extremely steep, with a relatively small effective dissipation 
wavenumber. 
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FIWJRE 10(a,b). For caption see facing page. 

We now return to the question of equipartition between vortex and shock in the 
small scales. At  high Reynolds numbers, one possible scenario is that vortices a m  
formed in strong colliding shocks at  an intermediate scale and with a sufficient 
intensity to be able to survive on times of order one. Through mixing of such vortices, 
and nonlinear cascading towards small scales, it is possible that equipartition may 
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FIQURE 10. (a) Blow-up of figure 9 (upper-left collision) ; (a) vorticity in the same region, 
t = 4.0; (c) vorticity at a later time maximum, t = 4.8. 
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k 

FIQURE 11. Energy spectra of solenoidal (8) and compressible (c) parts of the velocity at time t = 4.0 
for run C. Notice the crests in the solenoidal spectrum, at an intermediate wavenumber 
corresponding to the production of vortices shown in figure lo@). 
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FIGURE 12. Sketches of (a) an oblique shock; (b) the collision of two shocks: the large arrows indicate 
the orientation of the shocks (see text); the broken line corresponds to a tangential discontinuity; 
(c) the temperature and entropy gradients a t  the origin of bipolar vortices (see equation (4.2)). 

be finally reached. This problem seems particularly sensitive to numerical resolution, 
since these vortices form in the advent of shock collisions which occur after shocks 
have formed. In  other words, the production of vorticity through shear occurs when 
the calculation is already well advanced, i.e. when the Reynolds number has already 
decreased somewhat. Again, a parametrization scheme that allows one to slow down 
the dissipation of mechanical energy may prove useful in this instance (see $6). 

5. Large-scale long-time behaviour of a supersonic flow 
In a two-dimensional incompressible flow, energy is barely dissipated, because of 

the constraint on the nonlinear terms of the enstrophy conservation (in the inviscid 
case). In a compressible flow, both the shocks and the acoustic waves contribute 
sizeably to the energy dissipation. In the absence of an external source, therefore, 
a supersonic flow cannot remain so forever and the question arises as to whether the 
energy depletion renders the flow eventually incompressible or whether the Mach 
number remains substantial for long periods of time. 

Several energetic quantities can be defined. The mechanical energy Emech is 
computed by subtracting from the total constant energy E the internal energy 
associated with the mean temperature. A more correct computation taking into 
account the instantaneous dissipation would be too costly since it requires evaluating 
several more FFTs. It was verified on low-resolution runs (64x64)  that both 
formulations agree to within 9 yo. The compressible EC and solenoidal Es energies are 
the sums over the computation box of their respective Fourier components, with 
E" = Ec + Es being the kinetic energy. The internal energy e is such that the total 
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FIQURE 13. Temporal evolution of the mechanical energy for run C. Increased dissipation sets 
in at the time of formation of the shocks. 
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FIGURE 14. Temporal evolution for run C of the r.m.8. Mach number (solid line), the ratio jy of the 
compressible to the kinetic energy (dot-dashed line) and the ratio of the internal to the mechanical 
energy (mixed line). Note the plateaux in the Mach number curve, indicating periods of replenishing 
the reservoir of compressible energy. 

energy is E = p(e+EV) .  Depletion from the kinetic energy source fills the internal 
energy and augments the temperature, and vice versa. 

We show in figure 13 the time evolution of the mechanical energy for run C. The 
clear break in the curve occurring at t = 1 corresponds to the time of shock formation, 
at  which dissipation of the mechanical energy into heat is enhanced. However, if we 
now plot the temporal evolution of the r.m.s. Mach number, a new phenomenon 
appears (figure 14): the decrease in the Mach number (solid line) is interrupted by 
several successive plateaux (see also Passot & Pouquet 1986). Such plateaux are 
associated with quiescent periods in the flow when the kinetic-energy reservoir is 
being replenished. Shocks can then again form and dissipate energy efficiently, and 
so on, thus provoking a dualistic temporal behaviour of the flow evolution which 
appears periodic. Indeed, when we plot (in figure 14) against time the ratios (dotted 
line) x = EC/W and (dot-dashed line) r = e/Emech (which can both vary between 0 
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and l) ,  we observe quasi-linear oscillations. Although x and r are independent, they 
are found to evolve almost in phase opposition (Passot & Pouquet 1986). 

This type of oscillatory behaviour has been predicted (Tatsumi & Tokunaga 1974) 
for flows that are simpler than the one studied here. Those authors looked at the 
one-dimensional case in the limit of small Mach numbers, using for that case the 
equations due to Lighthill (1956). They show analytically and numerically that the 
spectral density r ( k )  at scale k-l oscillates linearly in time with a frequency 
proportional to k. Thus the integrated ratio r ,  which is dominated by the large-scale 
components of the spectrum, undergoes an oscillation in which the dominant 
frequency is that linked to the integral scale I,. Other scales give small contributions 
because of the fast decreasing spectrum towards large wavenumbers. A t  high 
Reynolds numbers, more modes intervene and this can explain the visible departure 
from a pure sinusoidal behaviour in figure 14. This type of oscillatory behaviour is 
reminiscent of the acoustic exchanges that would be dominant at small Mach 
numbers. The fact that we still observe them in our simulations is linked to the 
persistence of the large-scale-containing eddies of a turbulent flow, even in the 
compressible case. Large-scale oscillations have also been reported for two- 
dimensional incompressible MHD calculations (Pouquet et al. 1987) and in three- 
dimensional stratified flows (M. Lesieur, private communication). 

For a large variety of Mach numbers and integral scales Z,, we find that the period 
of oscillation of the energy ratios x and r is linearly related to the characteristic time 
of propagation of a sound wave over a distance 1,. More precisely, we can in fact relate 
these oscillations to the interactions between the various waves propagating in the 
flow. The resolution reasonably achieved on a CRAY-1 computer on a uniform grid 
for the compressible two-dimensional problem is 256 x 256 points. Non-uniform grids 
would allow us to resolve finer scales of the flow, but appear difficult to implement 
for the type of configuration treated in this paper where flows are assumed 
homogeneous but nevertheless develop intricate structures evolving in time. With 
such resolutions, the natural choice in the initial conditions is one for which the width 
of individual eddies is approximately equal to their mutual separation. Thus, the 
intrinsic eddy turnover time and the acoustic propagation time are roughly the same. 
If one now considers several sets of wavetrains whose separation is much greater than 
their width, we should observe in the time evolution of the energy ratio x and r a 
succession of nonlinear pulses at  times at which the wave packets interact, followed 
by quiescent periods. We performed such a computation in the one-dimensional case 
and indeed found that it was so. 

The striking feature in the time evolution of the Mach number consists in the fact 
that it  denotes a collective behaviour, in the sense that coherent effects play a role 
in slowing down its decrease. It also indicates that the kinetic energy can persist in 
significant amounts for times long compared to the time of formation of individual 
shocks, because such dissipation does not occur continuously but in bursts. In fact, 
there are moments at which the flow pumps kinetic energy from the internal energy 
in order to form subsequent shock waves. This phenomenon may be enhanced by 
periodic boundary conditions, but we have verified that it persists in one-dimensional 
high-resolution runs with initial conditions restricted to a small portion at  the centre 
of the box. 

Long-time (w + O )  large-scale (k+ 0) behaviour properties of a turbulent flow are 
amenable to a renormalization group analysis (Forster, Nelson & Stephen 1977; 
Sulem, Fournier & Pouquet 1979). However, in the fully compressible case, technical 
difficulties arise owing to the high degree of nonlinearity appearing in the equations. 
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The problems treated with such diagrammatic techniques have been in the acoustic 
regime, looking in particular to corrections to the Kolmogorov -! law. In view of 
the oscillatory behaviour we obtain here, one cannot discard the hypothesis that the 
renormalization procedure may lead to the appearance of new terms in the equations 
(in the limit w+O, k+O) of the vertex type or of the eddy-viscosity type, possibly 
complex as has been found by Pelletier (1980) in the problem of Langmuir waves. 

6. Conclusion 
We have investigated, in this paper, two-dimensional homogeneous flows in the 

subsonic and supersonic regimes, using direct numerical simulations. In  the subsonic 
case, and for density fluctuations of the order of the squared Mach number, the flow 
retains its incompressible character at all scales, the acoustic level remaining low. In  
the supersonic case, the opposite occurs, with a strong domination of longitudinal 
modes in particular in the small scales of the flow. The transition between the two 
regimes occurs at an r.m.8. Mach number of 0.3. It is conceivably because of the 
quadrupole nature of the emission of sound that the subsonic regime persists to rather 
high values of the Mach number. This result corroborates the fact that the Lighthill 
(1955) formula for the change in the dissipation rate of energy is known to hold up 
to similar values of Ma. 

The other striking feature of our results is that shear turbulence may be produced 
from shocks, as conjectured by various authors (see, for example, Lighthill 1955). 
Such a production occurs locally, in particular in the narrow region downstream of 
the collision of two supersonic shocks, with a clear vortex-pair production of an 
intensity significant enough to be clearly visible on the energy spectra. This effect 
is also felt in the way energy is exchanged between the available modes (solenoidal, 
longitudinal, internal) and in the fact that the Mach number does not necessarily 
decrease monotonically with time. 

Finally, the anisotropy of individual shocks - which are of finite extent and as thin 
as viscosity will allow - is compensated by the presence of various other shocks in 
the flow, of random orientation, yielding isotropic velocity spectra. However, the 
strong local anisotropy in regions of strong density gradients has important conse- 
quences when self-gravity is switched on, giving rise to elongated structures in the 
form of filaments (J. LBorat, T. Passot & A. Pouquet, paper in preparation). 

In  order to pursue this type of work to apply it to astrophysical problems such 
as the role of turbulence in star formation, one needs to investigate the behaviour 
of flows for long times and a t  high Reynolds numbers. 

Few theoretical models for a fully turbulent and compressible flow have been 
developed. For example, two-point closures which have been widely used for 
incompressible turbulence (Pouquet 1984) are difficult to implement in the com- 
pressible case, because of the high degree of nonlinearity in the original equations. 
However, Weiss (1979) has written such a closure scheme via modelling of the 
pressure term which renders the equations quadratically nonlinear, and thus simpler 
to handle algebraically. A numerical integration of those equations enabled Weiss to 
show that, in two as well as in three dimensions, the flow remains quasi-incompressible 
for all times. Our results confirm the validity of the model, in two dimensions at least, 
up to an r.m.8. Mach number of 0.3. Such models may thus be very useful in a variety 
of situations from the re-entry problem of space vehicles, to subsonic turbulence in 
molecular clouds. In particular, they are easier to handle both analytically and 
numerically than the primitive equations, and provide in a simple way time- 
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dependent and spectrally dependent expressions of transport coefficients such as eddy 
viscosities. We are in the process of evaluating these coefficients and implementing 
them in a large-scale simulation as a possible way to parametrize the small scales of 
the flow, as already done in the incompressible case (Chollet & Lesieur 1981 ; Lesieur 
1984). 

Numerical simulations prove to be an experimental tool complementary to those 
available in the laboratory. It permits one to investigate a range of parameters of 
importance, for example in astrophysical problems of high fluctuating Mach number, 
of high magnetic Reynolds number, to name two, which are not accessible in the 
laboratory. Moreover, it gives a direct evaluation of derivative fields such as the 
vorticity and, in MHD, the current, hence important dynamical quantities such as 
the helicity (Moiseev et al. 1983) can be computed, whereas such measurements in 
the laboratory are difficult, both with hot-wire anemometry or laser-Doppler 
velocimetry. On the other hand, the clear drawback of the numerical approach taken 
as an experimental tool is its limitation in resolution, i.e. in reasonably and reliably 
attainable Reynolds numbers. 

One possible way to simulate highly turbulent flows is to couple together a 
numerical integration of the large scales and a parametrization of the small scales. 
This approach is followed in the treatment of compressible inhomogeneous flows by 
Ha Minh & Vandromme (1986) by extending existing k-e models. As mentioned 
before, in the homogeneous case, one can make use of analytical expressions for 
transport coefficients. 

Another approach is to use some form of artificial viscosity, assuming that the flow 
is inviscid in the whole domain except in shocks and contact discontinuities. Without 
resorting to this method, it is customary with spectral codes to use hyperviscosities, 
i.e. a modified power of the Laplacian, for example a bi-Laplacian. Such a term 
concentrates the dissipation in a narrow range of wavenumbers near the cutoff k,,,, 
thus leaving more room for the inertial range. However, hyperviscosity seems less 
satisfactory in the compressible case. in particular because it creates spurious 
oscillations near the shocks and leads t,o the appearance of zones in which energy is 
created (at the expense of the internal-energy reservoir) instead of being dissipated. 
This defect can be remedied, and we are presently working on that problem, in 
particular to investigate the oscillatory behaviour of the large scales ( Passot & 
Pouquet 1987). 

We have used the FFT algorithm written by C. Temperton, and the graphical 
software of NCAR. Computations have been performed on the CRAY-1 of the Centre 
de Calcul Vectoriel pour la Recherche under contracts 1630 and 3674. We are thankful 
to J. Ldorat for useful discussions. This work received financial support from the 
CNRS through the RCP ‘Fluides astrophysiques en rdgime supersonique ’ under 
contract number 080702, and the ATP ‘Dynamique des fluides astrophysiques et 
gdophysiques ’ under contract number 1227. 
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